CHROMIUM-6 DRINKING WATER REGULATION

OUTLINE

- Chromium
- History of the Regulation
- Regulation Impact
- Occurrence in Water Supplies
- Treatment Options
- Non-Treatment Options
- Next Steps

CHROMIUM (Cr)

- Chromic oxide 9th most abundant compound on earth's crust
- Occurs primarily as chromium-3 (CrIII; Trivalent Chromium) or chromium-6 (CrVI; Hexavalent Chromium)
 - CrIII, a required nutrient found in vegetables, fruits, meats, grains and yeast; essential to normal glucose, protein and fat metabolism in humans.
 - CrVI, found in the environment from the erosion of natural chromium deposits.

CHROMIUM (Cr)

- Some isolated industrial sources:
 - Stainless steel, leather tanning, wood preservation, textile dyes and corrosion protection.
 - Hinkley, CA
 - PG&E operates a compressor station to recompress the natural gas in their transmission pipelines.
 - CrVI was added to the water used in cooling towers to prevent rust in the machinery.
 - The contaminated water was stored in unlined ponds which entered the groundwater.

CHROMIUM REGULATION

- In 1977, the State of California set the State's Maximum Contaminant Level (MCL) for Total Chromium:
 - 0.05 mg/L = 50 ppb
 - Total Chromium = CrIII + CrVI
 - Assumes Total Chromium = CrVI
- About 1 drop in 250 55 gallon drums

CHROMIUM REGULATION

- 1977 US Environment Protection Agency (EPA) adopted California's Total Chromium MCL:
 - o.o5 mg/L = 50 ppb (National MCL)
- 1991 EPA raised the Total Chromium MCL:
 - o.1 mg/L = 100 ppb (National MCL)
- 2000 Erin Brockovich creates attention to CrVI and prompts legislature to focus on the development of a more stringent CrVI MCL.

CHROMIUM REGULATION

- 2001 Utility agencies in CA begin monitoring for CrVI under CA UCMR
 - UCMR Unregulated Contaminant Monitoring Rule
 - Currently in its third round; UCMR 3
 - The EPA selects 30 contaminants to monitor.
 - The data is used to support the decision to regulate a contaminant in the interest of protecting public health.
- 2001 California Department of Public Health (CDPH) requests that the Office of Environmental Health Hazard Assessment (OEHHA) develop a Public Health Goal (PHG) for CrVI.

CHROMIUM VI REGULATION

- Oct, 2001 Governor signed SB-351 requiring that the CDPH adopt a MCL for CrVI by 1/1/2004.
- Aug, 2009 OEHHA releases draft PHG at 60 ppt.
 - 1 ppt = 1 drop in 20 Olympic-sized pools.

CHROMIUM VI REGULATION

- Dec, 2010 OEHHA releases draft PHG at 20 ppt, which is then finalized in July, 2011.
 - With an approved PHG, the CDPH could now begin on setting an MCL for CrVI as required by SB-351 (2001).
 - CDPH is mandated by law to set the MCL as close as "practically and economically feasible" to the State's PHG
- Dec, 2013 Superior Court rules in favor of NRDC/EWG and requires that CDPH set an MCL by Aug 31, 2013.
- Aug, 2014 CDPH sets CrVI MCL at 10 ppb.

CHROMIUM VI REGULATION

- California Administrative Procedure Act allows up to one year to finalize new regulations (i.e. Aug 23, 2014)
- CDPH dismisses most of 20,000 comments received.
 - CDPH underestimated the occurrence and compliance costs of meeting the new CrVI MCL.
 - Ex: CDPH database showed that the City of Banning only had 1 sources that would exceed the MCL, when in reality there are 7 sources.
 - Ex: CDPH database showed that the CVWD had 8 sources that would exceed the MCL, when in reality there are 30 sources.
- On June 20, 2014 water agencies received a letter from the CDPH stating that the new MCL for CrVI would become effective on July 1, 2014.

IMPACT OF NEW MCL

- Estimated Statewide Costs:
 - Capital Costs: \$4.1 Billion
 - Annual O&M Costs: \$231 Million
- Initial monitoring must begin on or before January 1, 2015.
- Quarterly monitoring is required when the MCL is exceeded.
 - Compliance is determined by whether a running annual average exceeds the MCL.

LOCAL OCCURRENCE

OCCURRENCE STATE WIDE

OCCURRENCE IN THE U.S.

MONITORING

WELLS	3 Quarter Average CrVI (ppb)	AVG PRODUCTION AC-FT/YR (2010-2014)
\longrightarrow C ₂	17.0 12.8	143
\longrightarrow C ₃	15.7 11.8	660
→ C ₄	14.3 10.8	530
→ C6	13.3 10.0	463
М10	11.0	158
M11	11.5	420
→ M ₁₂	23.0 17.3	236
		$\Sigma = 2,710$

• 2010-2014 City Wide Average Production = 8,500 AC-FT/YR

TREATMENT OPTIONS BEST AVAILABLE TECHNOLOGIES

- Weak Base Anion Exchange (WBA)
- Strong Base Anion Exchange (SBA)
- Reduction Coagulation Filtration (RCF)

TREATMENT COSTS (CAPITAL)

TREATMENT COSTS (O&M; \$/YEAR)

NON-TREATMENT OPTION

- Dynamic Well Profiling and CrVI Isolation.
 - Process of determining at which depths the highest levels of CrVI are entering the well.
 - Blank casings to reduce CrVI intrusion.
 - Possible loss of production in the well.
- Profiling cost = \$30,000 per well (\$210,000)
- Construction cost = \$150,000 per well (\$1.05 M)
- Converting wells to non-potable wells.

CORRECTIVE ACTION PLAN

- Dynamic Well Profiling
 - November, 2015 April, 2016
- Modifications to Wells
 - November, 2016 May, 2017
- Analysis to Determine Treatment Options
 - November, 2016- August, 2017
- Design/Construction of Treatment Facilities
 - December, 2017 May, 2019

SB-385 (Hueso)

• What it does:

- Allows a public water system to apply for a limited period of time to achieve compliance.
- Requires water systems to prepare and submit a compliance plan.
- Requires that water customers be informed of compliance progress.

• What it doesn't do:

- The bill does not delay compliance efforts.
- The bill does not exempt any public water systems from compliance with the MCL.
- The bill does not modify the MCL of 10 ppb.

QUESTIONS?